N95 mask and the dilemma of the ballistic trajectory of respiratory particles in COVID-19

Authors

DOI:

https://doi.org/10.5327/Z1414-4425202227764

Keywords:

Viral disease COVID-19, Aerosol, Disease transmission, infectious. Mask N95

Abstract

Objective: To present theoretical elements about the transmission of SARS CoV-2 through respiratory particles, in addition to its aerodynamic diameter and ballistic trajectory, to support reflections on the adequacy of the use of masks by health professionals. Method: Academic essay using narrative review data from the literature. Results: Clarifies the confusion about the terms droplets, droplet nuclei, aerosols and particles, divergences that contribute to differentiated understandings about transmission mechanisms of this etiological agent, with the adoption of different intervention measures to control this virus. It shows data on the transmissibility of SARS-CoV-2 by air, despite the technical and methodological difficulties for detecting this agent in the air, a situation that hinders hard conclusions about the aerial transmission of this pathogen. Conclusions: It is believed to be an error to use the lack of sars-cov-2 identification conclusions in air samples, to question airborne transmission, also to recommend prevention measures depending on the aerodynamic size of viruses. Thus, the use of the N95 mask by health professionals during the pandemic should be a basic and unequivocal measure for the protection and safety of this population.

Author Biography

Eliana Auxiliadora Magalhães Costa, Universidade do Estado da Bahia – Salvador (BA), Brasil.

Pós-Doutora em Saúde Pública. Profa. Adjunta da Universidade do Estado da Bahia.

References

World Health Organization. Mask use in the contexto of COVID-19. Geneva: WHO; Dec 2020. Disponível em: https://www.who.int/covid-19/information

World Health Organization. Rational use of personal protective equipment for COVID-19 and considerations during severe shortages. Geneva: WHO; Dec 2020. Disponível em: https://apps.who.int/iris/handle/10665/331215?locale-attribute=pt&

World Health Organization. Prevention, identification and management of health worker infection in the context of COVID-19. Geneva: WHO; Oct 2020. Disponível em: https://www.who.int/publications/i/item/10665-336265

Center for Disease Controle and Prevention. Scientific Brief: SARS CoV-2 Transmission. Updated 7 Mai 2021. Disponível em: https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/sars-cov-2-transmission.html#print

SOUTO, A. C. et al. Recomendações para procedimentos assistências em saúde à luz da segurança do paciente durante a pandemia de Covid-19. 2020. Disponível em: https://redecovida.org/main-site-covida/wp-content/uploads/2020/09/Relatorio- Seguran%C3%A7a-do-Paciente.pdf. Acesso em: 23 jun. 2021.

World Health Organization. Transmission of SARS-CoV-2: implications for infection prevention precautions Scientific Brief. Geneva: WHO; 9 July 2020. Disponível em: https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions

Howarda J, Huangc A, Lid Z, Tufekcie Z, Zdimalf V. et al. An evidence review of face masks against COVID-19. PNAS. 2021; 118 (4): e2014564118. http://doi.org/ 10.1073/pnas.2014564118

Tang JW, Bahnfleth WP, Bluyssen PM, Buonanno G, Jimenez JL, Kurnitski J. et al. Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Journal of Hospital Infection 110. 2021; 89e96. http://doi.org/10.1016/j.jhin.2020.12.022

Sriraman K, Shaikh A, Parikh S, Udupa S, Chatterjee N, Shastri J. et al. Non-invasive adapted N-95 mask sampling captures variation in viral particles expelled by COVID-19 patients: Implications in understanding SARS-CoV2 transmission. PLOS ONE. 2021;12: 1-10. https://doi.org/10.1371/journal.pone.0249525

.Buonannoa G, Stabilea L, Morawskab L Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment. Environment International 141 (2020) 105794. http://doi.org/10.1016/j.envint.2020.105794

Schijven J, Vermeulen LC, Swart A, Meijer A, Duizer e. et al.. Quantitative Microbial Risk Assessment for Airborne Transmission of SARS-CoV-2 via Breathing, Speaking, Singing, Coughing, and Sneezing. Environmental Health Perspectives. 2021;129(4). http://doi.org/10.1289/EHP7886

Stadnytskyia V,, Baxb CE, Baxa A, Anfinruda F.The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. PNAS.2020;2(117): 11875–11877. http://doi.org/ 10.1073/pnas.2006874117

Doremalen Nv, Bushmaker T, Morris DH, Holbrook MG, Hamilton MT, Gamble A, Williamson BN et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. Editorial. The New England Journal of Medicine.2020. http://doi.org/10.1056/NEJMc2004973

Morawska L, Johnsona GR, Ristovskia ZD, Hargreavesa M, Mengersena K, Corbettb S. et al. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. Aerosol Science. 2009; 40: 256-269.

Pan M, Lednicky JA, Wu C.-Y. Collection, particle sizing and detection of airborne viroses. Journal of Applied Microbiology.2019; 127: 1596—1611. http://doi.org/10.1111/jam.14278

Agência Nacional de Vigilância Sanitária. ANVISA. Nota Técnica. NOTA TÉCNICA GVIMS/GGTES/ANVISA Nº 04/2020 Orientações para Serviços de Saúde: Medidas de Prevenção e Controle que devem ser adotadas durante a assistência aos casos suspeitos ou confirmados de infecção pelo novo CORONAVÍRUS (SARS-CoV-2) – atualizada em 25/02/2021. Brasília: ANVISA. 2021

Brochot C, Saidi MN, Bahloul A. How Effective Is the Filtration of ‘KN95’ Filtering Facepiece Respirators During the COVID-19 Pandemic? Annals of Work Exposures and Health. 2021;6(3): 358–366. http://doi.org/: 10.1093/annweh/wxaa101

Greenhalgh T, Jimenez JL, Prather KA, Tufekci Z, Fisman D, Schooley R. Ten scientific reasons in support of airborne transmission of SARS-CoV-2. The lancet.com.2021;397. http://doi.org/10.1016/S0140-6736(21)00869-2

Heneghan CJ, Spencer EA, Brassey J, Plüddemann A, Onakpoya IJ, Evans DH, Conly JM, Jefferson T. SARS-CoV-2 and the role of airborne transmission: a systematic review. F1000Research. 2021;10:232. http://doi.org/10.12688/f1000research.52091.1

Morawska L, Milton DK. It Is Time to Address Airborne Transmission of

Coronavirus Disease 2019 (COVID-19). Clinical Infectious Diseases. 2020; 71 (1): 2311-13. http://doi.org/10.1093/cid/ciaa939

Bulfone TC, Malekinejad M, Rutherford GW, Razani N. Outdoor Transmission of SARS-CoV-2 and Other Respiratory Viruses: A Systematic Review. The Journal of Infectious Diseases. 2021;223. http://doi.org/10.1093/infdis/jiaa742

Lirong Zou, Feng Ruan, Mingxing Huang, Lijun Liang, Huitao Huang, Zhongsi Hong. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. 2020; 382:12. http://doi.org/10.1056/NEJMc2001737

Barycka K, Szarpak L, Filipiak KJ, Jaguszewski M, Smereka J, Ladny JR. et al.. Comparative effectiveness of N95 respirators and surgical/face masks in preventing airborne infections in the era of SARS-CoV2 pandemic: A meta-analysis of randomized trials. PLOS ONE. 2020:1-12. https://doi.org/10.1371/journal.pone.0242901

Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. The Lancet online.2020; 1. https://doi.org/10.1016/S0140-6736(20)31142-9

Published

2022-06-07

How to Cite

Magalhães Costa, E. A. (2022). N95 mask and the dilemma of the ballistic trajectory of respiratory particles in COVID-19. Revista SOBECC, 27. https://doi.org/10.5327/Z1414-4425202227764

Issue

Section

REVIEW ARTICLES